$Sc(OTf)_{3}$ -Catalyzed Synthesis of Indoles and $SnCl_{4}$ -Mediated Regioselective Hydrochlorination of 5-(Arylamino)pent-3-yn-2-ones

Fang Yang, Ke-Gong Ji, Shaukat Ali, and Yong-Min Liang*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, People's Republic of China

S Supporting Information

Highly substituted indole derivatives bearing alkyl and aryl moieties can be prepared by $Sc(OTf)_{3}$ -catalyzed Friedel–Crafts alkenylation of 5-(arylamino)pent-3-yn-2-ones. In addition, a method for regioselective hydrochlorination of 5-(arylamino)pent-3 yn-2-ones mediated by SnCl₄ in moderate to good yields (up to 84%) has been developed. The resulting exclusive Z-selectivity of the $C-Cl$ bond can be further exploited using cross $C-N$ coupling reactions.

INTRODUCTION

The indole skeleton is a ubiquitous bioactive heterocycle in nature, especially in naturally occurring alkaloids. Indoles are often used for the construction of many biologically active compounds with diverse pharmacological properties,¹ such as Sumatriptan, ondansetron, and tadalafil.² Their important biological and pharmaceutical relevance has stimulated considerable interest of synthetic chemists and has encouraged the development of numerous synthetic strategies to prepare them. The structural core of indoles can be synthesized by various classical methods. 3 However, the functional group tolerance and the starting material availability often limit these syntheses. In some cases, it remains difficult to prepare suitably substituted indoles by standard indole-forming reactions. Thus, more benign protocols for preparing indoles from readily available and simple substrates still need to be actively persued. In recent years, a range of synthetic approaches to indoles have been reported,⁴ in most of which the formation of the N-C2,⁵ $C2-C3$, or $C3-C3a^7$ bond is the key step. Lewis-acidcatalyzed or mediated methods have also been proven to be useful for preparing indoles.⁸ We envisioned that the treatment of 5-(arylamino)pent-3-yn-2-ones 1 with Lewis acid would lead to intramolecular Friedel-Crafts reaction, 9 resulting in a quinoline derivative. However, unexpectedly, the final data revealed indole derivatives 2. Herein, we report a $Sc(OTf)_{3}$ catalyzed¹⁰ C-C bond formation for the synthesis of highly substituted indole derivatives using 5-(arylamino)pent-3-yn-2 ones as the substrates. Also, highly Z-selective $C-Cl$ bond formation was also achieved in the presence of $SnCl₄¹¹$ as mediator.

RESULTS AND DISCUSSION

r) Chemical Society 1998

Yzel Synthesis of Indoles and SnCl_a-Mediated

1991 American Chemical Society 1992

Josephan Lines (Society 1992)

Josepha Chemical Society 1992

Josepha Chemical Society 1992

The Chemical Soci Our initial investigation was focused on finding a metal triflate^{10a,b,12} catalyst to construct indole derivatives. Using 0.3 mmol of 4-((4-chlorophenyl)(methyl)amino)-1-phenylbut-2-yn-1-one 1a and 5 mol % of $Sc(OTf)_3$ in 1,2-dichloroethane (DCE) at 60 \degree C, the desired product 2-(5-chloro-1-methyl-1H-indol-3yl)-1-phenylethanone 2a was formed in 35% yield after 24 h (Table 1, entry1). Other triflate salts, such as $Bi(OTf)_{3}$, $Hf(OTf)_{4}$, $In(OTf)_3, Yb(OTf)_3, Cu(OTf)_2, and AgOTf, were also applied to$ the reaction, but these catalysts were found to be inefficient (entries 2–7). By increasing temperature to 85 \degree C, a 40% yield of 2a was obtained (entry 8). With 10 mol % of $Sc(OTf)_{3}$, a moderate yield (51%) of 2a was obtained after 24 h at 85 $\mathrm{^{\circ}C}$ (entry 9). Other solvents were also tested in this reaction, but no superior results were obtained (entries $11-13$). Other Lewis acid catalysts, such as TfOH, $BF_3 \cdot Et_2O$, $SnCl_4$, $TiCl_4$, $AuCl_3$, $FeCl_3$, and $AlCl_3$, were found to be inefficient to form indole derivatives. To our surprise, when 10 mol % of $SnCl₄$ was used as catalyst, a highly Z -selective $C-Cl$ bond was constructed successfully. Then we increased the amount of $SnCl₄$ to 50 mol % (0.5 equiv), and a 60% yield of (Z)-3-chloro-4-((4-chlorophenyl)(methyl)amino)-1 phenylbut-2-en-1-one 3a was obtained after 5 h (Table 1, entry 18). Other MCL_x salts were also tested, but no better results were obtained (entries $20-23$).

To expand the scope of these divergent reactions of 5- (arylamino)pent-3-yn-2-ones, we first examined various representative $5-(\text{arylamino})$ pent-3-yn-2-ones $1a-s$ under indole-forming

```
Published: September 06, 2011
Received: July 20, 2011
```
Table 1. Optimization of Conditions for the Transformation of 5-(Arylamino)pent-3-yn-2-ones 1a to Indole Derivatives 2a and (Z)-4-Chloropent-3-en-2-ones 3a

conditions, as depicted in Scheme 1. Thus, the cascade reaction involving $C-C$ bond formation of 5-(arylamino)pent-3-yn-2-ones $1a$ -s proceeded smoothly to provide corresponding products $2a$ -s in moderate to good yields. When the R^2 is a phenyl group, the reaction works well with both electron-donating and electron-withdrawing R^1 groups (Scheme 1, 2a-2i). Moderate yields of corresponding products were obtained with little effect shown by R groups to this transformation. Substrate 1j with an electron-withdrawing aryl R^2 group, such as 4-ClC₆H₄, and an electron-withdrawing R^1 group (4-Cl) can afford the desired product $2m$ in 63% yield. The derivative 1m can also give the expected indole 2m in 81% yield. Furthermore, to expand the scope of this reaction, we also investigated a range of 5 -(arylamino)pent-3-yn-2-ones $1n-q$. Under the optimized condition, several $1H$ -benzo $[g]$ indole derivatives $2n-q$ can be prepared successfully in moderate yields. The molecular structure of the representative product 2q was determined by X-ray crystallography (see Supporting Information).¹³ To our delight, when 5-(arylamino)pent-3-yn-2-ones 1r,s were subjected to this transformation, the corresponding 5,6-dihydro-4Hpyrrolo[3,2,1-ij]quinoline derivatives 2r,s, which are important intermediates in natural products, were separated in moderate yields.

After this, we examined the scope of $C-Cl$ bond formation of 5-(arylamino)pent-3-yn-2-ones. Under the optimized condition, we also investigated a wide range of 5-(arylamino)pent-3-yn-2 ones 1 with different substituents R, R^1 , and R^2 in the presence of 0.5 equiv of $SnCl₄$ at 85 °C in DCE. It was found that these substrates were effectively converted into the corresponding (Z)- 4-chloropent-3-en-2-ones 3 in moderate to good yield with exclusive Z-selectivity, as depicted in Table 2. The molecular structure of the representative product 3l was determined by X-ray crystallography (see Supporting Information).¹⁴ The reaction tolerates the presence of different electron-donating and electron-withdrawing aryl groups. Fortunately, in all of the examples studied, only exclusive Z-selective products were obtained.

A standard feature of this process is the fact that the (Z)-4 chloropent-3-en-2-ones mediated by $SnCl₄$ can be further elaborated by using various copper-catalyzed processes. For example, the Ullmann coupling of (Z)-4-chloropent-3-en-2-ones 3l afforded the corresponding product 4l in moderate yield (Scheme 2).

On the basis of the above observations, we propose the following plausible mechanisms for $Sc(OTf)_3$ -catalyzed and $SnCl_4$ -mediated

Scheme 1. Sc(OTf)₃-Catalyzed C-C Bond Formation of 5-(Arylamino)pent-3-yn-2-ones 1 to Indole Derivatives 2^a

 a Conditions: 0.3 mmol of 1 with 10 mol % of Sc(OTf)₃ in DCE (3.0 mL) at 85 °C. b For details, see the Supporting Information. c The reaction was carried out in toluene at 85 °C.

Table 2. SnCl₄-Mediated Regioselective formation of (Z) -4-Chloropent-3-en-2-ones 3 from 5-(Arylamino)pent-3-yn-2-ones 1^a

^a Conditions: 0.3 mmol of 1 with 0.5 equiv of SnCl₄ in DCE (3.0 mL) at 85 °C.

cascade reactions (Scheme 3), which may involve the following steps. (i) Coordination of the carbonyl moiety of 5- (arylamino)pent-3-yn-2-ones 1 to $Sc(OTf)_3$ catalyst gives the

complex A. (ii) The subsequent ortho-carbon atom of arylamine as the nucleophile attacks the carbon-carbon triple bond and affords intermediate B. (iii) B on isomerization yields 1-(indolin-3-ylidene)propan-2-one C and regenerates the catalyst $Sc(OTf)_{3}$. (iv) C undergoes the subsequent 1,3-H shift to give indole derivatives 2. (v) $SnCl₄$ eliminates a chloride anion to give SnCl₃, which coordinates with the carbonyl moiety of 5-(arylamino)pent-3-yn-2-ones 1 to give complex D .^{11a,b} (vi) The chlorine anion as nucleophile attacks the carbon-carbon triple bond and affords intermediate trichloro((3-chloropropa-1,2-dien-1-yl)oxy)stannane E. (vii) E is hydrolyzed and isomerization to give Z-selective products 3, during which the steric effect plays a key role. Meanwhile, the $SnCl_{4-n}(OH)_n^{11c}$ can mediate the reaction again by eliminating a second chloride anion.

CONCLUSION

In summary, a $Sc(OTf)_{3}$ -catalyzed intramolecular Friedel-Crafts reaction for the synthesis of highly substituted indole derivatives 2 from 5-(arylamino)pent-3-yn-2-ones 1 has been realized. In addition, a SnCl₄-mediated protocol for highly Zselective $C-Cl$ bond formation was also successfully developed. The resulting $C-Cl$ bond can be further exploited using cross $C-N$ coupling reactions.

EXPERIMENTAL SECTION

General Procedure: Synthesis of Indole Derivatives **2a**-2s. To a solution of 5-(arylamino)pent-3-yn-2-ones 1 (0.20 mmol) in DCE (3.0 mL) was added 9.8 mg $(10 \text{ mol } \%)$ of Sc $(0 \text{ Tf})_3$. The resulting mixture was stirred at 85 °C. When the reaction was considered complete as determined by TLC analysis, the reaction mixture was

Scheme 2. Cu-Catalyzed Ullmann Reaction of 3l to 4l

Scheme 3. Proposed Mechanism

diluted with ethyl ether (40 mL), washed with water and saturated brine, dried over $Na₂SO₄$, and evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford corresponding $2-(1H$ -indol-3-yl)ethanones $2a-2s$.

Characterization Data of 2a-s. 2-(5-Chloro-1-methyl-1H-indol-3-yl)-1-phenylethanone **2a**: yield 51%; dark red solid; mp 84–86 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.2 Hz, 2H), $7.57 - 7.53$ (m, 2H), $7.47 - 7.43$ (m, 2H), $7.19 - 7.14$ (m, 2H), 7.01 (s, 1H), 4.34 (s, 2H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.4, 136.6, 135.3, 133.1, 129.2, 128.8, 128.6, 128.5, 125.1, 122.1, 118.4, 110.4, 106.9, 35.1, 32.9; IR (neat, cm⁻¹) 2923, 1724, 1683, 1477, 1451, 1211, 792, 690; HRMS (ESI) calcd for $C_{17}H_{14}CNO [M+H]^{+}$ = 284.0837, found 284.0841.

2-(1-Methyl-1H-indol-3-yl)-1-phenylethanone $2b$: yield 46%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 6.8 Hz, 2H), 7.59 (d, $J = 8.0$ Hz, 1H), 7.51 - 7.47 (m, 1H), 7.39 (t, $J = 7.6$ Hz, 2H), 7.24 - 7.18
(m, 2H), 7.13 - 7.09 (m, 1H), 6.94 (s, 1H), 4.35 (s, 2H), 3.65 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ ppm 197.8, 136.8, 136.6, 132.9, 128.5, 128.5, 127.8, 127.7, 121.7, 119.1, 118.8, 109.2, 107.1, 35.3, 32.6; IR $(neat, cm^{-1})$ 2924, 1679, 1596, 1473, 1448, 1332, 1210, 742, 689; HRMS (ESI) calcd for $C_{17}H_{15}NO [M + H]^+ = 250.1226$, found 250.1228.

2-(4-Chloro-1-methyl-1H-indol-3-yl)-1-phenylethanone $2c'$ Compound with 2-(6-Chloro-1-methyl-1H-indol-3-yl)-1-phenylethanone **2c**" (1:1): yield 42%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, $J = 1.2$ Hz, $2H$), 8.03 (d, $J = 8.0$ Hz, $2H$), 7.58-7.52 (m, $2H$), 7.49 (s, 3H), 7.47 – 7.42 (m, 2H), 7.26 (d, J = 2.0 Hz, 1H), 7.18 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 7.09-7.02 (m, 3H), 6.98 (s, 2H), 4.69 (s, 2H), 4.35 (s, 2H), 3.71 (s, 3H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 198.3, 197.5, 138.4, 137.3, 137.0, 136.6, 133.1, 132.9, 129.5, 128.6, 128.6, 128.5, 128.5, 128.4, 127.9, 126.4, 126.2, 124.4, 122.1, 120.1, 119.9, 119.8, 109.4, 108.2, 107.5, 107.5, 36.3, 35.2, 33.0, 32.8; IR (neat, cm⁻¹) 2926, 1687, 1600, 1476, 1452, 1331, 1212, 1067, 757, 691; HRMS (ESI) calcd for $C_{17}H_{14}CINO [M + H]^{+} = 284.0837$, found 284.0847.

2-(1,5-Dimethyl-1H-indol-3-yl)-1-phenylethanone 2d: yield 45%; dark red oil; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, J = 8.1 Hz, 2H), 7.44 (d, $J = 6.9$ Hz, 1H), 7.38-7.31 (m, 3H), 7.09 (d, $J = 8.1$ Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.86 (s, 1H), 4.29 (s, 2H), 3.62 (s, 3H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ ppm 197.9, 136.7, 135.3, 132.9, 128.6, 128.5, 128.4, 127.9, 123.4, 118.4, 109.0, 106.6, 35.5, 32.7, 21.5; IR

 $(neat, cm^{-1})$ 2360, 1629, 1531, 1218, 768, 689; HRMS (ESI) calcd for $C_{18}H_{17}NO [M + H]^{+} = 264.1383$, found 264.1389.

2-(1,7-Dimethyl-1H-indol-3-yl)-1-phenylethanone **2e**: yield 30%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.6 Hz, 2H), 7.52 (t, J = 7.6 Hz, 1H), 7.44-7.41 (m, 3H), 6.98 (t, J = 7.2 Hz, 1H), 6.90 (d, J = 7.2 Hz, 1H), 6.86 (s, 1H), 4.34 (s, 2H), 3.97 (s, 3H), 2.73 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ ppm 197.9, 136.7, 135.6, 132.9, 129.4, 128.8, 128.6, 128.5, 124.4, 121.3, 119.5, 116.8, 107.0, 36.6, 35.3, 19.6; IR $(neat, cm^{-1})$ 2922, 1670, 1382, 1069, 752, 689; HRMS (ESI) calcd for $C_{18}H_{17}NO [M + H]^{+} = 264.1383$, found 264.1389.

2-(5-Methoxy-1-methyl-1H-indol-3-yl)-1-phenylethanone 2f: yield 37%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.05–8.03 (m, 2H), $7.54 - 7.50$ (m, 1H), 7.48 (s, 1H), $7.46 - 7.41$ (m, 2H), 6.86 (s, 1H), 6.79 $(dd, J = 8.4 \text{ Hz}, 2.0 \text{ Hz}, 1H), 6.73 \text{ (d, } J = 2.0 \text{ Hz}, 1H), 4.34 \text{ (s, } 2H), 3.86$ $(s, 3H)$, 3.66 $(s, 3H)$; ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.8, 156.5, 137.6, 136.7, 132.9, 128.6, 128.5, 126.6, 122.2, 119.6, 109.1, 107.3, 92.9, 55.7, 35.5, 32.7; IR (neat, cm⁻¹) 2921, 1669, 1611, 1499, 1219, 1055, 772, 691; HRMS (ESI) calcd for $C_{18}H_{17}$ NO $[M + H]^{+} = 280.1332$, found 280.1336.

2-(1Benzyl-1H-indol-3-yl)-1-phenylethanone 2g: yield 42%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.06–8.04 (m, 2H), 7.63 (d, $J = 7.2$ Hz, 1H), $7.55 - 7.51$ (m, 1H), 7.43 (t, $J = 7.6$ Hz, 2H), $7.24 - 7.21$ $(m, 3H)$, 7.19-7.11 $(m, 3H)$, 7.08-7.05 $(m, 3H)$, 5.26 $(s, 2H)$, 4.41 $(s, 3H)$ 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.8, 137.4, 136.7, 136.5, 132.9, 128.7, 128.6, 128.5, 128.0, 127.5, 127.3, 126.7, 122.0, 119.5, 119.0, 109.8, 108.1, 50.0, 35.6; IR (neat, cm⁻¹) 2923, 2360, 1678, 1601, 1449, 1174, 746, 695; HRMS (ESI) calcd for $C_{23}H_{19}NO [M + H]^{+} =$ 326.1539, found 326.1543.

1-Phenyl-2-(1-phenyl-1H-indol-3-yl)ethanone 2h: yield 39%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.2 Hz, 2H), 7.66 (d, $J = 7.6$ Hz, 1H), 7.54 (t, J = 7.2 Hz, 2H), 7.47–7.43 (m, 6H), 7.33–7.30 (m, 2H), 7.25-7.17 (m, 2H), 4.46 (s, 2H); ¹³C NMR (100 MHz, CDCl3) δ ppm 197.5, 139.6, 136.6, 136.0, 133.1, 129.5, 128.8, 128.6, 128.5, 126.9, 126.3, 124.2, 122.7, 120.3, 119.2, 110.6, 110.0, 35.4; IR $(neat, cm^{-1})$ 2921, 1683, 1596, 1500, 1455, 1210, 749, 695; HRMS (ESI) calcd for $C_{22}H_{17}$ NO $[M + H]^{+} = 312.1383$, found 312.1389.

1-Phenyl-2-(1-(prop-2-yn-1-yl)-1H-indol-3-yl)ethanone 2i: yield 35%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 (d, J = 8.4 Hz, 1H), 7.25-7.23 (m, 1H), 7.16-7.14 (m, 2H), 4.81 (d, J = 2.0 Hz, 2H), 4.39 (s, 2H), 1.55 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.6, 136.7, 136.1, 133.0, 128.6, 128.6, 128.3, 126.3, 122.2, 119.8, 119.1, 109.4, 108.5, 77.7, 73.5, 35.7, 35.4; IR $(n$ eat, cm⁻¹ $)$ 2922, 1681, 1598, 1466, 1337, 1211, 1181, 745, 689; HRMS (ESI) calcd for $C_{19}H_{15}NO [M + H]^{+} = 274.1226$, found 274.1230.

2-(5-Chloro-1-methyl-1H-indol-3-yl)-1-(4-chlorophenyl)ethanone 2j: yield 63%; dark red solid; mp 190–192 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H), 7.52 (t, J = 0.8 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.19-7.16 (m, 2H), 6.99 (s, 1H), 4.29 (s, 2H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 196.2, 139.5, 135.3, 134.8, 129.9, 129.2, 128.9, 128.7, 125.2, 122.1, 118.3, 110.4, 106.6, 35.2, 32.9; $IR \ (neat, \ cm^{-1})$ 2922, 2361, 2336, 1679, 1091, 785, 671; $H RMS \ (ESI)$ calcd for $C_{17}H_{13}Cl_2NO [M + H]^+$ = 318.0447, found 318.0450.

2-(1-Benzyl-1H-indol-3-yl)-1-(4-chlorophenyl)ethanone 2k: yield 50%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.24 (s, 3H), 7.19-7.11 (m, 3H), 7.06-7.04 (m, 3H), 5.25 (s, 2H), 4.36 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 196.6, 139.3, 137.4, 136.6, 134.9, 130.0, 128.8, 128.7, 127.9, 127.6, 127.2, 126.7, 122.1, 119.6, 118.9, 109.9, 107.8, 50.0, 35.7; IR (neat, cm⁻¹) 2923, 2361, 1679, 1589, 1393, 1171, 1092, 741, 699; HRMS (ESI) calcd for $C_{23}H_{18}CINO [M + H]^{+} =$ 360.1150, found 360.1158.

2-(1-Benzyl-5-chloro-1H-indol-3-yl)-1-phenylethanone 2l: yield 73%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.6

Hz, 2H), $7.57 - 7.54$ (m, 2H), 7.46 (t, $J = 7.6$ Hz, 2H), $7.26 - 7.23$ (m, 3H), 7.15-7.11 (m, 3H), 7.05-7.03 (m, 2H), 5.24 (s, 2H), 4.37 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.3, 137.0, 136.6, 134.9, 133.1, 129.2, 128.8, 128.7, 128.6, 128.5, 127.7, 126.7, 125.4, 122.3, 118.6, 110.9, 107.7, 50.2, 35.3; IR (neat, cm⁻¹) 2923, 1685, 1470, 1448, 1211, 772, 694; HRMS (ESI) calcd for $C_{23}H_{18}CINO [M + H]^{+} = 360.1150$, found 360.1153.

2-(1-Benzyl-5-chloro-1H-indol-3-yl)-1-(4-chlorophenyl)ethanone **2m**: yield 81%; dark red solid; mp 74–76 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 1.6 Hz, 1H), 7.41 (d, J = 8.8 Hz, 2H), 7.30-7.26 (m, 3H), 7.16-7.10 (m, 2H), 7.09 (s, 1H), 7.05-7.03 (m, 2H), 5.24 (s, 2H), 4.33 (s, 2H); ¹³C NMR (100 MHz, CDCl3) δ ppm 196.1, 139.5, 136.9, 135.0, 134.8, 129.9, 129.0, 128.9, 128.8, 128.7, 127.8, 126.7, 125.5, 122.4, 118.5, 110.9, 107.4, 50.2, 35.4; IR (neat, cm⁻¹) 2923, 1689, 1588, 1470, 1204, 1092, 772, 733, 699; HRMS (ESI) calcd for $C_{23}H_{17}Cl_2NO [M + H]^+ = 394.0760$, found 394.0766.

2-(1-Benzyl-1H-benzo[g]indol-3-yl)-1-phenylethanone 2n: yield 56%; dark red solid; mp 66–68 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.2 Hz, 2H), 8.01 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 7.2 Hz, 1H), 7.72 (d, $J = 8.4$ Hz, 1H), 7.55-7.52 (m, 2H), 7.42 (t, $J = 7.6$ Hz, 2H), $7.34 - 7.29$ (m, 2H), $7.28 - 7.19$ (m, 3H), 7.09 (s, 1H), 7.00 (d, $J = 6.4$ Hz, 2H), 5.70 (s, 2H), 4.48 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.8, 137.6, 136.7, 133.0, 131.4, 129.9, 129.1, 128.9, 128.6, 128.5, 128.1, 127.4, 125.9, 125.3, 125.2, 123.4, 122.6, 121.3, 120.9, 118.7, 109.1, 53.4, 35.5; IR (neat, cm⁻¹) 2089, 1637, 802, 745; HRMS (ESI) calcd for $C_{27}H_{21}NO [M + H]^{+} = 376.1690$, found 376.1694.

2-(1-Allyl-1H-benzo[g]indol-3-yl)-1-phenylethanone 2o: yield 40%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 7.2 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.55-7.50 (m, 2H), 7.48-7.44 (m, 2H), 7.42-7.38 (m, 2H), 7.05 (s, 1H), $6.19-6.10$ (m, 1H), 5.22 (d, $J = 10.8$ Hz, 1H), 5.11 (t, $J = 2.4$ Hz, 2H), 4.91 (d, J = 17.2 Hz, 1H), 4.46 (s, 2H); ¹³C NMR (100 MHz, CDCl3) δ ppm 197.8, 136.7, 133.6, 133.0, 131.4, 129.7, 129.2, 128.6, 128.5, 127.5, 125.2, 125.0, 123.4, 122.6, 121.1, 121.1, 118.7, 117.2, 108.9, 52.1, 35.5; IR (neat, cm⁻¹) 2922, 1681, 809, 747; HRMS (ESI) calcd for $C_{23}H_{19}NO [M + H]^{+} = 326.1539$, found 326.1545.

2-(1-Methyl-1H-benzo[g]indol-3-yl)-1-phenylethanone $2p$: yield 45%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 7.2 Hz, 2H), 7.93 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.54-7.48 (m, 3H), 7.41 (q, J = 7.6 Hz, 3H), 6.97 (s, 1H), 4.43 $(s, 2H)$, 4.19 $(s, 3H)$; ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.8, 136.7, 133.0, 131.4, 130.2, 129.2, 128.6, 128.6, 128.1, 125.2, 124.8, 123.3, 120.8, 120.6, 118.7, 108.1, 38.3, 35.3; IR (neat, cm⁻¹) 2922, 2361, 2336, 1680, 1394, 1068, 689; HRMS (ESI) calcd for $C_{21}H_{17}NO [M + H]^{+} =$ 300.1383, found 300.1377.

2-(1-Methyl-1H-benzo[g]indol-3-yl)-1-(p-tolyl)ethanone 2q: yield 42%; yellow solid; mp $146-148$ °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, $J = 8.4$ Hz, 1H), 7.97 – 7.92 (m, 3H), 7.68 (d, $J = 8.8$ Hz, 1H), $7.52 - 7.48$ (m, 2H), $7.43 - 7.39$ (m, 1H), 7.23 (d, J = 8.4 Hz, 2H), 6.98 $(s, 1H)$, 4.41 $(s, 2H)$, 4.21 $(s, 3H)$, 2.38 $(s, 3H)$; ¹³C NMR (100 MHz, CDCl3) δ ppm 197.5, 143.7, 134.2, 131.4, 129.3, 129.2, 128.7, 128.1, 125.2, 124.9, 123.4, 123.3, 120.8, 120.6, 118.8, 108.4, 38.3, 35.3, 29.7, 21.6; IR (neat, cm⁻¹) 2922, 1677, 1605, 1397, 1284, 805, 748; HRMS (ESI) calcd for $C_{22}H_{19}NO [M + H]^{+} = 314.15393$, found 314.1545.

2-(5,6-Dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)-1-phenylethanone **2r**: yield 40%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 8.0 Hz, 3H), 7.03 (t, J = 7.6 Hz, 2H), 6.90 (d, $J = 9.2$ Hz, 1H), 4.39 (s, 2H), 4.09(t, $J = 6.0$ Hz, 2H), 2.96 (t, J = 6.0 Hz, 2H), 2.23 - 2.18 (m, 2H); ¹³C NMR (100 MHz, CDCl3) δ ppm 197.9, 136.7, 134.4, 132.9, 128.6, 128.5, 125.3, 125.1, 121.7, 119.6, 118.6, 116.3, 107.2, 43.9, 35.8, 24.6, 22.8; IR (neat, cm⁻¹) 2930, 1679, 1626, 1448, 1213, 752; HRMS (ESI) calcd for C₁₉H₁₇NO $[M + H]^{+} = 276.1383$, found 276.1386.

1-(4-Chlorophenyl)-2-(5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl) ethanone 2s: yield 30%; dark red solid; mp 77–79 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.40–7.37 (m, 3H), 7.04 (t, J = 7.6 Hz, 1H), 6.98 (s, 1H), 6.91 (d, J = 6.8 Hz, 1H), 4.35 (s, 2H), 4.09 (t, J $= 5.6$ Hz, 2H), 2.96 (t, J = 6.0 Hz, 2H), 2.23–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl3) δ ppm 196.7, 139.3, 135.0, 130.1, 128.8, 125.1, 125.0, 121.8, 119.7, 118.7, 116.2, 106.8, 44.0, 35.9, 29.7, 24.6, 22.8; IR (neat, cm⁻¹) 2927, 1684, 1627, 1591, 1390, 1091, 750; HRMS (ESI) calcd for $C_{19}H_{16}$ ClNO $[M + H] = 310.0993$, found 310.0999.

General Procedure: Synthesis of (Z)-4-Chloropent-3-en-2 ones 3. To a solution of 5-(arylamino)pent-3-yn-2-ones 1 (0.20 mmol) in DCE (3.0 mL) was added SnCl₄ (0.5 equiv) . The resulting mixture was stirred at 85 °C. When the reaction was considered complete as determined by TLC analysis, the reaction mixture was diluted with ethyl ether (40 mL), washed with water and saturated brine, dried over $Na₂SO₄$, and evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford corresponding (Z)-4-chloropent-3-en-2-ones 3.

Characterization Data of 3a-3t. (Z)-3-Chloro-4-((4-chlorophenyl)-(methyl)amino)-1-phenylbut-2-en-1-one $3a$: yield 60%; dark red oil; 1 H NMR (400 MHz, CDCl₃) δ 7.77 – 7.74 (m, 2H), 7.57 – 7.52 (m, 1H), 7.42 (t, $J = 7.6$ Hz, 2H), $7.25 - 7.23$ (m, 2H), 6.84 (t, $J = 1.6$ Hz, 1H), 6.70–6.66 (m, 2H), 4.20 (d, J = 1.6 Hz, 2H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 189.5, 146.6, 141.6, 137.2, 133.4, 129.2, 128.7, 128.5, 122.7, 120.7, 113.3, 60.5 , 39.1; IR (neat, cm⁻¹) 2917, 1670, 1598, 1501, 1217, 811, 764, 695; HRMS (ESI) calcd for $C_{17}H_{15}Cl_2NO [M+H]^+ = 320.0603$, found 320.0608.

(Z)-3-Chloro-4-(methyl(p-tolyl)amino)-1-phenylbut-2-en-1-one 3d: yield 42%; dark red oil; ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.1 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.35 - 7.30 (m, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 1.2 Hz, 1H), 6.61 (d, J = 8.4 Hz, 2H), 4.11 (s, 2H), 3.02 (s, 3H), 2.23 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ ppm 189.7, 146.0, 142.5, 133.3, 129.9, 129.6, 128.6, 128.5, 127.0, 120.5, 112.3, 60.8, 38.9, 20.2; IR (neat, cm⁻¹) 2922, 1669, 1616, 1518, 1449, 1258, 1219, 805, 756, 696; HRMS (ESI) calcd for $C_{18}H_{18}CNO [M + H]^{+} =$ 300.1150, found 300.1156.

 (Z) -4-(Benzyl(phenyl)amino)-3-chloro-1-phenylbut-2-en-1-one 3g: yield 68%; dark red oil; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.2 Hz, 2H), 7.30-7.27 (m, 4H), 6.70 (s, 1H), 6.84-6.79 (m, 3H), 4.71 (s, 2H), 4.30 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 189.7, 147.6, 141.9, 137.6, 137.3, 133.3, 129.5, 128.8, 128.6, 127.3, 126.7, 120.9, 118.1, 112.6, 58.4, 54.4; IR (neat, cm⁻¹) 2360, 1641, 1502, 747, 694; HRMS (ESI) calcd for $C_{23}H_{20}CINO [M + H]^{+} = 362.1306$, found 362.1310.

(Z)-3-Chloro-1-(4-chlorophenyl)-4-((4-chlorophenyl)(methyl)amino) but-2-en-1-one $3j$: yield 84%; dark red oil; 1 H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.24 (d, $J = 9.2$ Hz), 7.12 (d, $J = 8.8$ Hz, 2H), 6.79 (s, 1H), 6.67 (d, $J = 8.8$ Hz, 2H), 4.19 (d, J = 1.6 Hz, 2H), 3.10 (s, 3H); ¹³C NMR (100 MHz, CDCl3) δ ppm 188.3, 146.6, 142.3, 139.9, 135.5, 129.9, 129.3, 129.0, 122.8, 120.3, 113.3, 60.5, 39.1; IR (neat, cm⁻¹) 2921, 2361, 2336, 1671, 1594, 1501, 1216, 1093, 813; HRMS (ESI) calcd for C₁₇H₁₄Cl₃NO [M $+ H$]⁺ = 354.0214, found 354.0220.

(Z)-4-(Benzyl(4-chlorophenyl)amino)-3-chloro-1-phenylbut-2-en-1 one 31: yield 76%; yellow solid; mp 78–80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 8.0 Hz, 2H), $7.37 - 7.33$ (m, 2H), 7.28 (t, $J = 7.2$ Hz, 1H), $7.24 - 7.17$ (m, 4H), 6.95 (s, 1H), 6.70 (d, J = 9.2 Hz, 2H), 4.67 (s, 2H), 4.28 (s, 2H); ¹³C NMR (100 MHz, CDCl3) δ ppm 189.5, 146.1, 141.5, 137.1, 137.0, 133.4, 129.3, 128.9, 128.7, 128.5, 127.4, 126.5, 123.0, 120.9, 113.7, 58.5, 54.5; IR $(neat, cm^{-1})$ 2924, 1671, 1598, 1499, 1261, 1225, 811, 733, 697; HRMS (ESI) calcd for $C_{23}H_{19}Cl_2NO [M + H]^+ = 396.0916$, found 396.0920.

(Z)-3-Chloro-4-(3,4-dihydroquinolin-1(2H)-yl)-1-phenylbut-2-en-1 one 3r: yield 65%; yellow solid; mp 78–80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 7.01 (t, J = 7.2 Hz, 2H), 6.69 (t, J = 7.6 Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H), 4.15 (s, 2H), 3.44 (t, J = 6.0 Hz, 2H), 2.83 (t, $J = 6.2$ Hz, 2H), 2.07–2.01 (m, 2H); ¹³C NMR (100 MHz, CDCl3) δ ppm 189.9, 143.9, 142.0, 137.3, 133.3, 129.3, 128.6, 127.4, 122.5, 120.3, 117.2, 111.0, 59.4, 50.4, 27.9, 22.4; IR (neat, cm⁻¹) 2926, 1670, 1602, 1501, 1218, 748, 696; HRMS (ESI) calcd for C₁₉H₁₈ClNO $[M + H]^{+} = 312.1150$, found 312.1156.

(Z)-3-Chloro-1-(4-chlorophenyl)-4-(3,4-dihydroquinolin-1(2H)-yl)but-2-en-1-one 3s: yield 47%; orange solid; mp 78-80 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62, (d, J = 7.8 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.03 (t, J $= 7.8$ Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.84 (s, 1H), 6.62 (t, J = 7.2 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 4.07 (s, 2H), 3.36 (t, J = 5.1 Hz, 2H), 2.75 (t, J $= 6.6$ Hz, 2H), 1.95 (q, J = 5.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ ppm 188.7, 143.8, 142.5, 139.8, 135.7, 130.0, 129.4, 129.0, 127.4, 122.6, 120.0, 117.3, 111.0, 59.4, 50.4, 27.9, 22.4; IR (neat, cm⁻¹) 2928, 2847, 1672, 1604, 1502, 1217, 1091, 853, 819, 748; HRMS (ESI) calcd for $\rm C_{19}H_{17}Cl_2NO$ $\rm [M+H]^+$ = 346.0760, found 346.0766.

(Z)-3-Chloro-4-((3,4-dimethylphenyl)(methyl)amino)-1-phenylbut-2-en-1-one 3t: yield 72%; dark red oil; 1 H NMR (400 MHz, CDCl₃) δ 7.79–7.77 (m, 2H), 7.55–7.50 (m, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.04 $(d, J = 8.4 \text{ Hz}, 1H), 6.92 (t, J = 1.2 \text{ Hz}, 1H), 6.58 (d, J = 2.4 \text{ Hz}, 1H), 6.53$ $(dd, J = 8.0 \text{ Hz}, 2.8 \text{ Hz}, 1H$, 4.17 $(d, J = 1.2 \text{ Hz}, 2H)$, 3.08 $(s, 3H)$, 2.26 $(s, 3H)$, 2.20 $(s, 3H)$; ¹³C NMR (100 MHz, CDCl₃) δ ppm 189.8, 146.5, 142.5, 137.5, 137.3, 133.2, 130.4, 128.6, 128.6, 125.8, 120.6, 113.9, 109.9, 60.8, 38.9, 20.3, 18.6; IR (neat, cm⁻¹) 2920, 2361, 2336, 1671, 1615, 1511, 1219, 1018, 774, 695; HRMS (ESI) calcd for C₁₉H₂₀ClNO $[M + H]^{+} = 314.1306$, found 314.1312.

Characterization Data of 4l. (Z)-4-(Benzyl(4-chlorophenyl)amino)- 3-(diethylamino)-1-phenylbut-2-en-1-one 41: yield 65%; yellow solid; mp $104-106$ °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 2H), 7.44-7.38 (m, 3H), 7.23-7.19 (m, 2H), 7.18-7.15 (m, 5H), 6.82 (d, J = 8.8 Hz, 2H), 5.77 (s, 1H), 4.89 (s, 2H), 4.60 (s, 2H), 3.22 (q, J = 7.2 Hz, 4H), 0.99 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 188.0, 159.4, 149.0, 142.7, 140.2, 130.6, 129.0, 128.2, 128.1, 127.3, 126.7, 126.6, 123.1, 115.6, 95.0, 54.7, 45.8, 44.4, 12.4; IR (neat, cm⁻¹) 2977, 2928, 1535, 1491, 1355, 1222, 759, 703; HRMS (ESI) calcd for $C_{27}H_{29}CN_{2}O[M + H]^{+} =$ 433.2041, found 433.2047.

ASSOCIATED CONTENT

6 Supporting Information. Experimental details, analytical data for all new compounds, and X-ray crystallography data of 2p and 3l in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

NEAUTHOR INFORMATION

Corresponding Author

*E-mail: liangym@lzu.edu.cn.

ACKNOWLEDGMENT

We thank the NSF (NSF-21072080, NSF-20732002) for financial support. We acknowledge National Basic Research Program of China (973 program), 2010CB833203, and also the support by the 111 Project.

REFERENCES

(1) (a) Baeyer, A. Justus Liebigs Ann. Chem. 1866, 140, 295. (b) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970. (c) Sundberg, R. J. Indoles; Academic Press: London, 1996. (d) Brancale, A.; Silvestri, R. Med. Res. Rev. 2007, 27, 209. (e) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.

(2) (a) Costall, B.; Gunning, S. J.; Naylor, R. J.; Tyers, M. B. Br. J. Pharmacol. 1987, 91, 263. (b) Daugan, A. C.-M. Patent Application WO95/19978, 1995. (c) Doenicke, A.; Brand, J.; Perrin, V. L. Lancet 1988, 1, 1309.

(3) (a) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, UK, 1984; Vol. 4, p 313. (b) Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241. (c) Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1884, 17, 559. (d) Robinson, B. Chem. Rev. 1969, 69, 227.

(4) (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. (b) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875. (c) Saito, A.; Kanno, A.; Hanzawa, Y. Angew. Chem., Int. Ed. 2007, 46, 3931. (d) Opatz, T.; Ferenc, D. Org. Lett. 2006, 8, 4473. (e) Pei, T.; Chen, C.-Y.; Dormer, P. G.; Davies, I. W. Angew. Chem., Int. Ed. 2008, 47, 4231. (f) Okamoto, N.; Miwa, Y.; Minami, H.; Takeda, K.; Yanada, R. Angew. Chem., Int. Ed. 2009, 48, 9693. (g) Haag, B. A.; Zhang, Z.-G.; Li, J.-S.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 9513. (h) Leogane, O.; Lebel, H. Angew. Chem., Int. Ed. 2008, 47, 350. (i) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326. (j) Medeiros, M. R.; Schaus, S. E.; Porco, J. A., Jr. Org. Lett. 2011, 13, 4012.

(5) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 2000, 647. (b) Barluenga, J.; Trinicado, M.; Rubio, E.; Gonzalez, J. M. Angew. Chem., Int. Ed. 2003, 42, 2406. (c) Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 2284.

(6) (a) Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 5662. (b) Kraus, G. A.; Guo, H.-T. J. Org. Chem. 2009, 74, 5337.

(7) (a) Chen, C. Y.; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1997, 62, 2676. (b) Yagoubi, M.; Cruz, A. C. F.; Nichols, P. L.; Elliott, R. L.; Willis, M. C. Angew. Chem., Int. Ed. 2010, 49, 7958.

(8) (a) Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69, 1126. (b) Kumar, M. P.; Liu, R.-S. J. Org. Chem. 2006, 71, 4951. (c) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N. Org. Lett. 2010, 12, 3736.

(9) (a) Suarez-Pantiga, S.; Palomas, D.; Rubio, E.; Gonzalez, J. M. Angew. Chem., Int. Ed. 2009, 48, 7857. (b) Fillion, E.; Fishlock, D. Org. Lett. 2003, 5, 4653.

(10) (a) Yoon, M. Y.; Kim, J. H.; Choi, D. S.; Shin, U. S.; Lee, J. Y.; Song, C. E. Adv. Synth. Catal. 2007, 349, 1725. (b) Song, C. E.; Jung, D. U.; Choung, S. Y.; Roh, E. J.; Lee, S. G. Angew. Chem., Int. Ed. 2004, 43, 6183.

(11) (a) Dias, L. C.; Meira, P. R. R.; Ferreira, E. Org. Lett. 1999, 1, 1335. (b) Kitagawa, O.; Fujiwara, H.; Suzuki, T.; Taguchi, T.; Shiro, M. J. Org. Chem. 2000, 65, 6819. (c) Zhang, Z.-G.; Zhang, Q.; Yan, Z.-H.; Liu, Q. J. Org. Chem. 2007, 72, 9808.

(12) (a) Tsuchimoto, T.; Maeda, T.; Shirakawa, E.; Kawakami, Y. Chem. Commun. 2000, 1573. (b) Komeyama, K.; Igawa, R.; Takaki, K. Chem. Commun. 2010, 46, 1748.

(13) The molecular structure of the product 2p was determined by means of X-ray crystallographic studies; for details, see the Supporting Information.

(14) The molecular structure of the product 3l was determined by means of X-ray crystallographic studies; for details, see the Supporting Information.